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Abstract:
There are over 400 proofs, algebraic, graphic, animated of Pythagoras’The-

orem. But how, particularly, did his proof, or the proof named after him, come
about? Nobody knows.
All proofs start with a right-angled triangle, necessarily so, including Euclid’s.
However, we use a quite different approach. It is more in the nature of an

exploration - an exploration of the applicability of similar triangles. This leads
us to the notion and definition of a right angle and a right-angled triangle, finally
resulting, in a sense, a ‘discovery’of Pythagoras’Theorem.
Starting at a fundamental level, with an arbitrary, (non-isosceles), triangle

and using elementary geometry of only simple proportions or ratios of similar
triangles, we use a construction which necessitates considering the triangle to
be right-angled, then leading easily on to the Theorem.

1. Similar Triangles
First we require that we can agree that we can decide whether one angle is

greater than another (and hence also if they are equal).
Second, if a line is drawn and another line cuts it and the angles on each

side of the cut are equal we call each angle a right angle ([1, Book I, Definition
10]). This is a purely geometrical definition without any notion of a numerical
measure or value given to an angle, so that we do not state that a right angle is
90◦. A triangle with one angle which is a right angle is a right-angled triangle
([1, Book I, Definition 21]). We also do not state that the sum of the angles of a
triangle is 180◦. Although we have given a definition of a right angle here, our
development forces the use of a right angle in its construction.

So let us embark on this exploration of applicability of similar triangles.
The two triangles shown are similar and their corresponding angles are equal.

The sides of either triangle are in the same proportion to the corresponding sides
of the other.

2



Figure 1 Similar Triangles

The angles α, β, γ are the same in both triangles.

From this we have
a
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.
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But this can be written
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Thus for the numerical example above
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Now this involves proportions, or ratios on the left-hand sides of the equa-
tions which refer to the first triangle whilst ratios on the right-hand sides refer
to the second triangle.

What can we do with this?

Well if we could divide the triangle into two similar sub-triangles, then only
the sides of the original triangle would be involved in ratios - and we might
expect that we could then get some relation between the sides of this original
triangle.

The creative thought!

2. The Construction
With a non-isosceles triangle one angle, say γ, is greater than one or both

of the other two.
So let us draw a line through the vertex C of the triangle ABC at this

greatest angle —as shown, whose sides CA and CB contain γ. (If two angles are
equal and greatest any one can be chosen.) Let the line cut AB at D and let
AD = c1 and DB = c2 so that c = c1 + c2.
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Figure 2 A Divided Triangle

4BCD :
c2
a
=
a

c
: 4ABC 4ADC : c1

b
=
b

c
: 4ABC

So we have two triangles within the original triangle ABC.

3. The First similar triangle within the original triangle
The line CD is quite arbitrary so we want to make it so that, say triangle

BCD, is similar to the original triangle ABC. This can always be done.
Simply draw CD so that the angle B̂CD is α (it doesn’t look it).
You may ask − why not make it β? Because we would be making an isosceles

triangle BCD which would not necessarily be similar to triangle ABC.
Then for 4BCD to be similar to 4ABC we must have B̂DC to be γ.
We can now write the ratios

4BCD :
c2
a
=
a

c
: 4ABC

or

c2 =
a2

c
. (1)

4. The Second similar triangle within the original triangle
If now we want triangle ACD to also be similar to the original triangle ABC

we should expect some constraints on the type of triangle ABC is in the first
place.
Now ÂCB is γ and we cannot also have ÂCD as γ as well (α 6= 0). Hence

ÂCD must be β and then ÂDC is γ.
So we have ÂDC = γ = B̂DC. That is, these angles are right angles. Then

too, as ÂCB = γ it also must be a right angle. This is the constraint on 4ABC
− that is, that it should be a right-angled triangle!
This now being the case, with 4ADC similar to 4ABC, we have the ratios

4ADC : c1
b
=
b

c
: 4ABC
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or

c1 =
b2

c
. (2)

5. Pythagoras’Theorem
Adding equations (1) and (2) we get

c = c1 + c2 =
a2 + b2

c
.

or
c2 = a2 + b2.

To the author’s knowledge this derivation is original.

6. History and Speculation
Dates for Pythagoras are c.570 - c.495 BC whilst dates for Euclid are c.330

- c.275BC, some 200 years after Pythagoras. Euclid’s Elements contains the
results of many previous writers, mathematicians and logicians. His Elements,
Book I, Proposition 47, contains Pythagoras’Theorem stating "In right-angled
triangles the square on the side opposite the right angle equals the sum of the
squares on the sides containing the right angle." (There is no mention of an
‘hypotenuse’.) Clearly from this, the notion of a right angle and a right-angled
triangle were known. Euclid’s proof of Pythagoras’Theorem is universal.
The Theorem was known over 1,000 years before Pythagoras, by the Baby-

lonians, but no ‘proof’is known. The Chinese and Indians were also aware of
it.
All proofs of the Theorem, necessarily start off with a right-angled triangle.

Assuming a right-angled triangle (unlike here), the proof by similar triangles
has been well-known since early Greek times. A generalization of Pythagoras is
the well-known trigonometric cosine formula.
The development and use of similarity occurs much later in Euclid’s Ele-

ments, Book VI, and so it is considered by some that the notion of similarity
was not employed by Pythagoras. And it is probable that early Greeks thought
more in terms of squares as an area rather than proportions - Euclid’s proof
uses that notion.
However, we have used similar triangles and have been at pains to explore

its applicability to an arbitrary triangle (at first) following where it leads us and
we find that we need the notion of a right angle (as originally defined in the
Elements) and a right-angled triangle.
It is therefore of some wonder whether Pythagoras (or Pythagoreans) also

played around with this idea with similarity in mind, seeing where it led him
(them). Since the Pythagoreans were a secretive group, it may well have been
something they never revealed!
So may we just remark: Pythagoras - he did it (t)his way?!
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